
Question

A parallel beam of light is incident from air at an angle α on the side PQ of a right angled triangular prism of refractive index $n = \sqrt{2}$. Light undergoes total internal reflection in the prism at the face PR when α has a minimum value of 45°. The angle θ of the prism is

- A 15°
- B 22.5°
- C 30°
- D 45°

Solution

Correct option is A)

According to Snell's law at the face PQ,

$$\therefore$$
 1 × sin α = n × sin β

Where, β be angle of refraction at the face PQ.

Given, at $\alpha = 45^\circ$, RI of prism n = $\sqrt{2}$

In this case,
$$\sin \beta = \frac{\sin 45^{\circ}}{n} = \frac{1}{2}$$

$$\gamma = 90^{\circ} - (180^{\circ} - (90^{\circ} + \theta + \beta))$$

Now, according to Snell's law at the face PR

$$\sqrt{2}$$
siny = 1

$$\therefore \sin(\theta + \beta) = 1/\sqrt{2}$$

Or,
$$\theta + 30^{\circ} = 45^{\circ}$$

Therefore, the correct option is - (A) 15°